Discrete POWER & Signal **Technologies**

TN5415A

TN5415A

FAIRCHILD

SEMICONDUCTOR TM

PNP High Voltage Amplifier

This device is designed for use as high voltage drivers requiring collector currents to 100 mA. Sourced from Process 76. See MPSA92 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	200	V
V _{CBO}	Collector-Base Voltage	200	V
V _{EBO}	Emitter-Base Voltage	4.0	V
lc	Collector Current - Continuous	100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Мах	Units
		TN5415A	
P _D	Total Device Dissipation Derate above 25℃	1.0 8.0	W mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	50	°C/W

PNP High Voltage Amplifier

		(continued)
Min	Мах	Units
		Min Max

OFF CHARACTERISTICS

Symbol

Electrical Characteristics

Parameter

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 0$	200		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$	200		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \ \mu A, I_C = 0$	4.0		V
I _{CBO}	Collector Cutoff Current	V _{CB} = 175 V		50	μA
I _{CEX}	Collector Cutoff Current	$V_{CE} = 200 \text{ V}, V_{BE} = 1.5 \text{ V} \text{ (rev)}$		50	μA
I _{CEO}	Collector Cutoff Current	V _{CE} = 150 V		50	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$		20	μA

TA = 25°C unless otherwise noted

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 50 \text{ mA}$	30	150	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA		2.5	V
V _{BE(on)}	Base-Emitter On Voltage	$I_{\rm C} = 50$ mA, $V_{\rm CE} = 10$ V		1.5	V

SMALL SIGNAL CHARACTERISTICS

C _{ob}	Output Capacitance	$V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		15	pF
C _{ib}	Input Capacitance	V _{EB} = 5.0 V, f = 1.0 MHz		75	pF
h _{fe}	Small-Signal Current Gain	$ \begin{array}{l} I_{C}=5.0 \text{ mA}, V_{CE}=10 \text{ V}, \\ f=5.0 \text{ MHz} \\ I_{C}=5.0 \text{ mA}, V_{CE}=10 \text{ V}, \\ f=1.0 \text{ kHz} \end{array} $	3.0 25		
Re _(hie)	Input Resistance	$V_{CE} = 10 \text{ V}, I_C = 5.0 \text{ mA}$		300	Ω
IS /b	Safe Operating Area	V _{CE} = 100 V, t = 100 mS	100		mA

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%